Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7926, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575619

ABSTRACT

Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5-15% wt/vol, honey like solution, 678-834 mPa s), thermal treatment for 2-4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300-400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.


Subject(s)
Acrylic Resins , Anti-Infective Agents , Nanofibers , Escherichia coli , Staphylococcus aureus , Industrial Development , Candida albicans , Carbon
2.
Microb Cell Fact ; 23(1): 79, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481199

ABSTRACT

The current study aimed to evaluate the effects of biogenic silver nanoparticles (AgNPs) on growth behavior and leaf anatomy of in vitro growing shoots of 'Picual' and 'Dolce' olive cultivars. Biosynthesis of AgNPs was carried out using the cell-free filtrate of Fusarium oxysporum. The dimension and shape of the synthesized AgNPs have been analyzed using spectroscopy and topography analysis tools, confirming that the biosynthesis of AgNPs is a crystalline nanostructure with an average particle size of 37 nm. The shoots of the selected olive cultivars were cultured on Rugini olive medium-supplemented AgNPs at 0, 10, 20, and 30mg L- 1. The effect of genotypes on shoot multiplication was significant, 'Picual' recorded higher values of shoot growth parameters compared with 'Dolce' cultivar. Adding AgNPs to the culture medium significantly affected the growth of in vitro olive shoots. AgNPs at 20 and 30mg L- 1 produced higher values of the number of shoots, shoot length, and leaf number of Picual cv. compared with the control treatments, but the higher AgNPs concentration harmed the growth parameters of Dolce cv. and recorded lower growth values compared with the lower concentration (10mg L- 1). AgNPs had a significant effect on leaf morphology and their anatomical structure. The current results showed that the stimulatory effect of AgNPs on shoot growth of in vitro olive shoots is highly dependent on plant genotype and nanoparticle concentration.


Subject(s)
Metal Nanoparticles , Olea , Metal Nanoparticles/chemistry , Silver/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
Synth Syst Biotechnol ; 9(2): 196-208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38385149

ABSTRACT

The goal of this study was to use statistical optimization to change the nutritional and environmental conditions so that Streptomyces baarensis MH-133 could make more active metabolites. Twelve trials were used to screen for critical variables influencing productivity using the Placket-Burman Design method. S. baarensis MH-133 is significantly influenced by elicitation, yeast extract, inoculum size, and incubation period in terms of antibacterial activity. A total of 27 experimental trials with various combinations of these factors were used to carry out the response surface technique using the Box-Behnken design. The analyses revealed that the model was highly significant (p < 0.001), with a lack-of-fit of 0.212 and a coefficient determination (R2) of 0.9224. Additionally, the model predicted that the response as inhibition zone diameter would reach a value of 27 mm. Under optimal conditions, S. baarensis MH-133 produced 18.0 g of crude extract to each 35L and was purified with column chromatography. The active fraction exhibiting antibacterial activity was characterized using spectroscopic analysis. The MIC and MBC values varied between 37.5 and 300 µg/ml and 75 and 300 µg/ml, respectively. In conclusion, the biostatistical optimization of the active fraction critical variables, including environmental and nutritional conditions, enhances the production of bioactive molecules by Streptomyces species.

4.
Sci Rep ; 13(1): 17387, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833470

ABSTRACT

In Egypt, sunflower charcoal-rot caused by Macrophomina phaseolina and maize late-wilt caused by Magnaporthiopsis maydis are the most prevalent, and can lead to huge yield losses of both crops under epidemic conditions. In this study, the potential use of vermitea and wood vinegar for management of both diseases was investigated. Data revealed that, among the 17 bacterial strains obtained from vermitea, three strains named VCB-2, VCB-7 and VCB-11 were chosen for having the greatest in vitro inhibitory effect against M. phaseolina and M. maydis, with fungal inhibition values of 54.2; 61.7, 65.2; 74.0 and 57.1; 87.0% against both pathogens, respectively. These strains were identified as Bacillus amyloliquefaciens, Serratia marcescens and Bacillus velezensis, respectively. Wood vinegar significantly reduced the colony diameter of M. phaseolina and M. maydis in in vitro trials conducted on potato dextrose agar medium amended with the desired concentrations of 0.5, 1.0, 1.5, 2.0, and 2.5%. The efficiency increased with increasing wood vinegar concentration, and 2.0% was the most effective (100% suppression). Data from greenhouse experiments showed that the application of vermitea or wood vinegar tended to decrease the incidence (% dead plants) of sunflower charcoal-rot (by 61.1 and 66.7%) and maize late-wilt (by 70.6%). These treatments had positive impacts on the plant growth parameters, photosynthetic pigments and antioxidative enzymes of sunflower and maize plants. Data from field experiments showed that the application of vermitea or wood vinegar decreased the incidence of charcoal-rot (by 72.8 and 72.0%) and late-wilt (by 88.7 and 87.0%) as well as increased the production sunflower and maize plants.


Subject(s)
Charcoal , Helianthus , Charcoal/pharmacology , Zea mays/microbiology
5.
Plant Foods Hum Nutr ; 78(4): 683-690, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688685

ABSTRACT

Cinnamaldehyde is an excellent natural antioxidant with high antioxidant activity, but its function in food or human digestive tract under acidic conditions remains to be studied. The effects of cinnamaldehyde in the presence of lactic acid on oxidative stress of Caenorhabditis elegans and the underlying molecular mechanisms were investigated in the present study. Results showed that cinnamaldehyde with or without lactic acid exhibited good antioxidant ability, represented by high SOD and CAT activities in C. elegans, while lactic acid exerted no effect on the antioxidant enzymes. Trace elements, like Cu, Fe, or Se, are important for the activities of antioxidant enzymes. Data of metal elements analysis revealed that cinnamaldehyde made big differences on the levels of Mn, Cu, Se of worms compared with single lactic acid treatment. Moreover, mechanistic study suggested that in the presence of lactic acid, cinnamaldehyde could enhance the expressions of akt-2, age-1 to increase the antioxidant activities. In addition, we found that lactic acid was able to change the metabolic profile of cinnamaldehyde in C. elegans, characterized by nucleosides and amino acids, which were involved in the purine metabolism, the biosynthesis, and metabolism of some amino acids, etc. This study provides a theoretical basis for further revealing the functional activity and mechanism of cinnamaldehyde under acidic conditions.


Subject(s)
Antioxidants , Caenorhabditis elegans , Animals , Humans , Infant , Caenorhabditis elegans/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Lactic Acid/metabolism , Lactic Acid/pharmacology , Superoxide Dismutase/metabolism , Oxidative Stress , Amino Acids/metabolism , Reactive Oxygen Species/metabolism
6.
Heliyon ; 9(5): e16125, 2023 May.
Article in English | MEDLINE | ID: mdl-37251841

ABSTRACT

The wide spread of nanotechnology applications currently carries with it the possibility of polluting the environment with the residues of these nanomaterials, especially those in the metallic form. Therefore, it is necessary to study the possibility of treating and removing various nanoscale metal pollutants in environmentally friendly ways. The present study focused on the isolation of multi-metal tolerant fungi to be applied in the bioremoval of Zn, Fe, Se, and Ag nanoparticles as potential nanoscale metal pollutants. Aspergillus sp. has been isolated as multi-metal tolerant fingus and investigated in the bioremoval of targeted nanometals from their aquoues solutions. The effect of biomass age, pH, and contact time was studied to determine the optimal biosorption conditions for fungal pellets towards metal NPs. The results showed a high percentage of fungal biosorption on the of two-day-old cells, which amounted to 39.3, 52.2, 91.7, and 76.8% of zinc, iron, selenium, and silver, respectively. The pH 7 was recorded the highest percentage of NPs removal for the four studied metals i.e. 38.8, 68.1, 80.4, and 82.0% of Zn-, Fe-, Se- and Ag-NPs, respectively. The contact time required between Aspergillus sp. and the metal nanoparticles to obtain the best adsorption was only 10 min in the case of Zn and Ag, but it was 40 min for both Fe and Se NPs. The efficiency of living fungal pellets in removing the four metallic NPs exceeded that of dead biomass by 1.8, 5.7, 2.5, and 2.5 folds for Zn, Fe, Se and Ag, respectively. However, utilization of dead fungal biomass for metallic NPs removal could be considered more applicable to the actual environmental applications.

7.
Heliyon ; 9(3): e14444, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925537

ABSTRACT

In Egypt, Dracaena sanderiana (lucky bamboo) is an ornamental plant imported from several countries. Two weeks after they arrived at the nurseries, anthracnose indications were detected on the shoots of imported D. sanderiana samples. Four Colletotrichum spp. isolates were obtained from the symptomatic lucky bamboo plants. The obtained isolates belonged to the species of C. gloeosporioides or C. dracaenophilum based on their morphological characteristics and molecular biology analyses. Pathogenicity tests reveal that C. dracaenophilum isolate 4 was found to be more pathogenic than the other isolates. The in vitro investigation was conducted with the objectives of evaluating six systemic fungicides for their inhibitory effect against C. dracaenophilum. Data reveal that, thiophanate-methyl and difenoconazole + azoxytrobin at ≥15 ppm completely inhibited the pathogen growth. Tebuconazole and flusllazole inhibited growth completely at ≥20 ppm, whereas iprodione and cyprodinil + fludioxonil had a lower effect (56.6 and 54.4% reduction, respectively) at this dose. The in vivo investigation was conducted with the objectives of evaluating the preventive and curative effects of the most effective fungicides against anthracnose disease. Lucky bamboo plants were treated with fungicide and either inoculated or not with C. dracaenophilum before being left for 25 or 60 days. On both insidiously infected and vaccinated lucky bamboo plants, the combination of difenoconazole, azoxytrobin, and thiophanate-methyl at 20 ppm greatly reduced the development of anthracnose. Tebuconazole and flusllazole were found to be phytotoxic.

8.
Environ Sci Pollut Res Int ; 30(6): 16694-16706, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36184704

ABSTRACT

Currently, bionanotechnologies are attracting great interest due to their promising results and potential benefits on many aspects of life. In this study, the objectives was to biosynthesis CuO-NPs using cell-free extract(s) of copper-resistant fungi and use them in bioremediation of textile industry wastewater. Out of 18 copper-resistant fungal isolates, the novel fungus strain Fusarium oxysporum OSF18 was selected for this purpose. This strain showed a high efficiency in extracellular reducing copper ions to their nano-form. The myco-synthesized CuO-NPs were characterized using UV-Vis spectroscopy, HRTEM, FTIR, and XRD and were found to be spherical nanocrystals with the size range of 21-47 nm. The bio-synthesized CuO-NPs showed promising antimicrobial activity as well as high efficiency in removing heavy metals and textile dye from industrial wastewater. The myco-synthesized CuO-NPs immobilized in alginate beads exhibited superior microbial disinfection (99.995%), heavy metals removal (93, 55, and 30 % for Pb, Cr, and Ni, respectively), and dye decolorization (90%). Such results represent a promising step to produce an eco-friendly, cost-effective, and easy-to handle tool for the bioremediation of textile industry wastewater.


Subject(s)
Metal Nanoparticles , Metals, Heavy , Copper/chemistry , Wastewater , Textile Industry , Metals, Heavy/analysis , Fungi , Metal Nanoparticles/chemistry
9.
Bioresour Bioprocess ; 10(1): 12, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-38647584

ABSTRACT

The effect of fermentation by Saccharomyces cerevisiae on biological properties of cinnamon (Cinnamomum cassia) was investigated. The study demonstrated that the extract of S. cerevisiae-fermented cinnamon (S.C.FC) has antioxidants higher than non-fermented one. The optimum results for antioxidant yield were noted with 107 CFU S. cerevisiae/10 g cinnamon and 70 mL of dH2O at pH 6 and incubated for 3 d at 35 °C. Under optimum conditions, ABTS, DPPH, and H2O2 radical-scavenging activity increased by 43.8, 61.5, and 71.9%, respectively. Additionally, the total phenols and flavonoids in S.C.FC were increased by 81.3 and 415% compared by non-fermented one. The fermented cinnamon had antimicrobial activity against L. monocytogenes, S. aureus, E. coli, S. typhi, and C. albicans. Also, the anti-inflammatory properties were increased from 89 to 92% after fermentation. The lyophilized extract of S.C.FC showed positive effect against Huh7 cancer cells which decreased by 31% at the concentration of 700 µg/mL. According to HPLC analysis, p-hydroxybenzoic acid, gentisic acid, catechin, chlorogenic acid, caffeic acid, and syringic acid were increased by 116, 33.2, 59.6, 50.6, 1.6, and 16.9%, respectively. Our findings suggest the applicability of cinnamon fermentation using S. cerevisiae as a useful tool for processing functional foods to increase their antioxidant and anti-inflammatory content.

10.
Biotechnol Rep (Amst) ; 36: e00768, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36245696

ABSTRACT

This study designed to investigate effect of fermentation by Lactobacillus plantarum on antioxidant and anticancer properties of Cinnamomum cassia aqueous solution. The optimum condition to produce high antioxidant activity was 107 CFU L. plantarum/10 g cinnamon at pH6 after 3 days of incubation at 35 °C. Fermented cinnamon showed an increase in ABTS, DPPH and H2O2 by 24.63, 58.31 and 60.27%, respectively over the control. Also, the total phenolic and flavonoid contents were increased, 8.15 to 11.40 mg GAE/g and 0.43 to 2.61 mg QE/g, respectively. The gallic acid, p-hydroxybenzoic acid, catechin and chlorogenic acid were increased by 37, 404, 11 and 98%, respectively. Also, anticancer activity was developed after fermentation. The increased antioxidant activity of fermented cinnamon could be attributed to the increase of some phenolics and flavonoids. Hence, cinnamon fermentation using L. plantarum is able to enhance its antioxidant and anticancer activities without producing toxic substances.

11.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080267

ABSTRACT

Starch is affected by several limitations, e.g., retro-gradation, high viscosity even at low concentrations, handling issues, poor freeze-thaw stability, low process tolerance, and gel opacity. In this context, physical, chemical, and enzymatic methods have been investigated for addressing such limitations or adding new attributes. Thus, the creation of biomaterial-based nanoparticles has sparked curiosity. Because of that, single nucleotide polymorphisms are gaining a lot of interest in food packaging technology. This is due to their ability to increase the mechanical and water vapor resistance of the matrix, as well as hide its re-crystallization during storage in high-humidity atmospheres and enhance the mechanical properties of films when binding in paper machines and paper coating. In medicine, single nucleotide polymorphisms (SNPs) are suitable as carriers in the field of drug delivery for immobilized bioactive or therapeutic agents, as well as wastewater treatments as an alternative to expensive activated carbons. Starch nanoparticle preparations can be performed by hydrolysis via acid hydrolysis of the amorphous part of a starch molecule, the use of enzymes such as pullulanase or isoamylase, or a combination of two regeneration and mechanical treatments with the employment of extrusion, irradiation, ultrasound, or precipitation. The possibility of obtaining cheap and easy-to-use methods for starch and starch derivative nanoparticles is of fundamental importance. Nano-precipitation and ultra-sonication are rather simple and reliable methods for nanoparticle production. The process involves the addition of a diluted starch solution into a non-solvent, and ultra-sonication aims to reduce the size by breaking the covalent bonds in polymeric material due to intense shear forces or mechanical effects associated with the collapsing of micro-bubbles by sound waves. The current study focuses on starch nanoparticle manufacturing, characterization, and emerging applications.


Subject(s)
Nanoparticles , Starch , Food Packaging , Nanoparticles/chemistry , Polymers , Starch/chemistry , Viscosity
12.
Biotechnol Rep (Amst) ; 35: e00753, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35864885

ABSTRACT

In this work, freshwater microalga, Haematococcus lacustris was isolated from the River Nile, identified and deposited in genebank under name of H. lacustris isolate REH10 with accession number OK336515. N-hexane extract was produced high inhibition effects against multi-antibiotic resistant pathogens. The n-Hexane extract was fractionated and 2 fractions (F3 & F4) exhibited high antibacterial activity (15 - 20 mm) compared with other fractions. Thus, they sub-fractionated and 2 sub-fractions produced from the F3 had high inhibition activity against all tested pathogens (18-20 mm). To identify the main compounds responsible for inhibition growth of multi-drug resistance bacteria, GC-MS chromatogram analyses was applied on the F3 and its sub-fractions 2 and 3. Five compounds detected in the 2 sub-fractions. Palmitic acid was identified as the first report antibacterial agent. The antioxidant activity of SF3-3 was reached to 86 and 80.5% for DPPH and ABTS.+ tests, respectively.

13.
Molecules ; 27(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744976

ABSTRACT

In this paper, we report on the design and synthesis of a novel series of quinazoline-2,4(1H,3H)-dione derivatives as fluoroquinolone-like inhibitors of bacterial gyrase and DNA topoisomerase IV to identify and develop antimicrobial agents to prevent bacterial resistance problems. Their structures were confirmed using spectroscopic analyses (IR, NMR, and EI-MS). The novel quinazoline-2,4(1H,3H)-dione derivatives were evaluated for their antimicrobial activities against Gram-positive and Gram-negative bacterial strains using the Agar well diffusion method to study the antimicrobial activities and compared them with the standard drugs. Most compounds displayed moderate activity. Among the tested compounds, the most promising compounds 13 and 15 provided broad bioactive spectrum against Gram-positive and Gram-negative strains compared to the standard drugs.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests , Quinazolines/chemistry , Structure-Activity Relationship
14.
AIMS Microbiol ; 8(4): 507-527, 2022.
Article in English | MEDLINE | ID: mdl-36694584

ABSTRACT

Biofilms of sporeformers found in the dairy industry are the major contaminants during processing, as they withstand heat and chemical treatment that are used to control microbes. The present work is aimed to remove these resistant forms of bacterial community (biofilm) present in dairy production lines using ecofriendly agents based on proteinase K (Prot-K) coupled with Zinc oxide nanoparticles (ZnO-NPs). Some metal/metal oxide (Ag, CuO and ZnO) NPs were prepared microbially, and ZnO-NPs were characterized as the most effective ones among them. The produced ZnO-NPs were 15-25 nm in size with spherical shape, and FTIR analysis confirmed the presence of proteins and alkanes surrounding particles as capping agents. Application of Prot-K for eradication (removal) of a model biofilm of mixed sporeformers on food-grade stainless steel resulted in an 83% reduction in the absorbance of crystal violet-stained biofilm. When Prot-K was mixed with the biosynthesized NPs ZnO_G240, the reduction increased to 99.19%. This finding could contribute to an efficient cleaning approach combined with CIP to remove the recalcitrant biofilms in dairy production lines.

15.
Antioxidants (Basel) ; 10(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34943107

ABSTRACT

This review reports on the effects of fermentation on the chemical constituents and antioxidant activity of plant-based food materials. Fermentation involves a series of reactions that modify the chemical components of the substrate. It could be considered a tool to increase the bioactive compounds and functional properties of food plant materials. Oxidative damage is key to the progression of many human diseases, and the production of antioxidant compounds by fermentation will be helpful to reduce the risk of these diseases. Fermentation also can improve antioxidant activity given its association with increased phytochemicals, antioxidant polysaccharides, and antioxidant peptides produced by microbial hydrolysis or biotransformation. Additionally, fermentation can encourage the breakdown of plant cell walls, which helps to liberate or produce various antioxidant compounds. Overall, results indicated that fermentation in many cases contributed to enhancing antioxidants' content and antioxidant capacity, supporting the fermentation use in the production of value-added functional food. This review provides an overview of the factors that impact the effects of fermentation on bioactive compound composition and antioxidant activity. The impacts of fermentation are summarized as a reference to its effects on food plant material.

16.
Int J Biol Macromol ; 172: 10-18, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33388320

ABSTRACT

Wastewater contaminated with dyes is discharged by huge amount daily, and involved many hazardous materials. Thus, this study focused on introducing low cost, ecofriendly and available removal agent (lignin-based adsorbent). Three adsorbents, APKL-4, APKL-5 and APKL-6 were obtained using gradient acid precipitation technology and used for methylene blue (MB) removal. The samples were characterized by SEM, FT-IR and zeta potential analyzer. The results indicated that the three adsorbents exhibit significantly different adsorption behavior due to the structural differences caused by fractionation. The APKL-5 and APKL-6 have fewer hydrophilic groups in their molecules and thus have more adsorption active sites to load MB molecules. A pore structure inside of APKL-5 molecules is form in acid fractionation, which allows it to carry more MB molecules. The adsorption capacity of APKL-5 increased 3.8 times (from 345 to 1310 mg g-1) in the alkaline solution which showing excellent pH responsiveness. This paper presents a new promising approach for preparing high efficiency, low cost and eco-friendly adsorbents and builds a foundation for developing further applications of lignin-based adsorbents.


Subject(s)
Acids/chemistry , Chemical Fractionation/methods , Coloring Agents/chemistry , Lignin/chemistry , Adsorption , Kinetics , Methylene Blue/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
17.
Int J Biol Macromol ; 174: 11-21, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33465363

ABSTRACT

Adsorption is considered to be a promising butanol recovery method for solving the issue of inhibition in the ABE (acetone-butanol-ethanol) fermentation. As a byproduct in the second generation biobutanol industry, lignin was found to be a good adsorbent for the butanol enrichment. It is conducive to the full utilization of renewable lignocellulose biomass resource. Kinetic and equilibrium experiments indicated that lignin had a satisfactory adsorption rate and capacity that are comparable to those of many synthetic materials. Multicomponent adsorption experiments revealed that lignin had higher adsorption selectivity toward butanol than that of ethanol and acetone. The adsorption capacity of lignin for butanol first increased and then gradually decreased with increasing temperature. And maximum adsorption capacity reached 304.66 mg g-1 at 313 K. The inflection point of temperature is close to the ABE fermentation temperature of 310 K. The condensed butanol by desorption was 145 g L-1, with a satisfying regeneration performance. 1H NMR and FT-IR spectra indicated that the aromatic units of lignin formed π-systems with A/B/E. The π-system is particularly significant for butanol due to its longer hydrocarbon chain. These results could contribute to the emerging lignin-based materials for butanol separation.


Subject(s)
Adsorption/physiology , Butanols/isolation & purification , Lignin/chemistry , 1-Butanol/chemistry , Acetone/chemistry , Biomass , Butanols/chemistry , Ethanol/chemistry , Fermentation/physiology , Lignin/metabolism , Spectroscopy, Fourier Transform Infrared/methods
18.
Heliyon ; 7(12): e08616, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34988315

ABSTRACT

Biosurfactants have many advantages outside chemical one, led for application it through different sectors. So, the present study aimed for improving the bioremediation technology of contaminated wastewater using biosurfactants produced by novel bacillus isolates. In this regard, Bacillus thuringiensis and Bacillus toyonensis strains were obtained as most producing isolates of highly active biosurfactants. The optimized conditions for high biosurfactants yield production were established. Also, the stability of the produced biosurfactants at various conditions, pH, temperature and salinity was studied. The biosurfactant has been reported up to 120 °C, pH 12 and 10% of NaCl. The identified biosurfactants, decanoic acid and oleamide were applied for wastewater remediation from oil residues and pathogens contamination. The biosurfactant was had high antibacterial activity compared with references antimicrobial drugs, as well as it is enhanced bioremediation technology for petroleum oil residues contaminating sites. Thus, we can say, these biosurfactants could achieve the objectives of sustainable development.

19.
Heliyon ; 6(9): e04956, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995633

ABSTRACT

Combination of arylidene hydrazinyl moiety with pyrido[2,3-d]pyrimidin-4-one skeleton in compounds 7‒26 results in the output of unprecedented anti-microbial agents. Arylidene hydrazinyl based on Pyrido[2,3-d]pyrimidin-4-one analoges 7‒26 prepared by the treatment of [2,3-d]pyrimidin-4-ones 6a,b with various aromatic aldehydes. The antimicrobial action for recently synthesized compounds was considered towards gram positive bacterial species (Staphylococcus aurous ATCC- 47077; Bacillus cereus ATCC-12228), gram negative bacterial species (Escherichia coli ATCC-25922; Salmonella typhi ATCC-15566) and Candida albicans ATCC-10231 as fungal strains. The antimicrobial action expanded by expanding the electron donating group in position 2 and 5 for Pyrido[2,3-d]pyrimidin-4-one core. Derivatives 13, 14, 15, 16 and 12; individually appeared hopeful anti-microbial action towards all strains utilized with inhibition zone higher than that of standard reference drug with lowest MIC.

20.
Methods Enzymol ; 630: 481-502, 2020.
Article in English | MEDLINE | ID: mdl-31931999

ABSTRACT

Enzymes as specific natural biocatalysts are present in all living organisms and they play a key role in the biochemical reactions inside, as outside the cell. Despite the wide range of environmental, medical, agricultural, and food applications, the high cost, non-reusability, and limited stability of soluble (non-immobilized) enzymes are considered barriers to their commercial application. Immobilization techniques are an effective strategy for solving problems associated with free enzymes in terms of improving the efficiency and stability of catalytic enzymes, as well as enhancing their separation and reusability in continuous industrial applications. Out of different supporting materials, magnetic nanoparticles are considered as the future trend for enzyme immobilization due to their exceptional properties regarding stabilization, easy recovery and reuse. Some recent techniques of enzyme immobilization on magnetic nanoparticles will be detailed hereafter in the chapter.


Subject(s)
Coloring Agents/isolation & purification , Enzymes, Immobilized/chemistry , Magnetite Nanoparticles/chemistry , Water Pollutants, Chemical/isolation & purification , Bacteria/enzymology , Biocatalysis , Biodegradation, Environmental , Enzyme Stability , Fungi/enzymology , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Peroxidase/chemistry , Wastewater/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...